Telegram Group & Telegram Channel
🎓 Как выбрать свою роль в Data Science и не потеряться в терминах

Если вы только начинаете разбираться в Data Science — перед вами лабиринт из названий: data scientist, аналитик, ML-инженер, BI, архитектор... Кто чем занимается? Что нужно учить?

➡️ Что внутри статьи

— Кто такие Data Engineer

— Чем отличается Data Architect от инженера и зачем он нужен в big data проектах

— Чем занимаются Data Analyst и почему это отличная точка входа в карьеру

— Что делает настоящий Data Scientist

В статье разобрано всё: от задач до технологий, которые реально спрашивают на собеседованиях.

📎 Ссылка

Азбука айтишника #ликбез
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/dsproglib/6412
Create:
Last Update:

🎓 Как выбрать свою роль в Data Science и не потеряться в терминах

Если вы только начинаете разбираться в Data Science — перед вами лабиринт из названий: data scientist, аналитик, ML-инженер, BI, архитектор... Кто чем занимается? Что нужно учить?

➡️ Что внутри статьи

— Кто такие Data Engineer

— Чем отличается Data Architect от инженера и зачем он нужен в big data проектах

— Чем занимаются Data Analyst и почему это отличная точка входа в карьеру

— Что делает настоящий Data Scientist

В статье разобрано всё: от задач до технологий, которые реально спрашивают на собеседованиях.

📎 Ссылка

Азбука айтишника #ликбез

BY Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение




Share with your friend now:
tg-me.com/dsproglib/6412

View MORE
Open in Telegram


Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение Telegram | DID YOU KNOW?

Date: |

Start with a fresh view of investing strategy. The combination of risks and fads this quarter looks to be topping. That means the future is ready to move in.Likely, there will not be a wholesale shift. Company actions will aim to benefit from economic growth, inflationary pressures and a return of market-determined interest rates. In turn, all of that should drive the stock market and investment returns higher.

The S&P 500 slumped 1.8% on Monday and Tuesday, thanks to China Evergrande, the Chinese property company that looks like it is ready to default on its more-than $300 billion in debt. Cries of the next Lehman Brothers—or maybe the next Silverado?—echoed through the canyons of Wall Street as investors prepared for the worst.

Библиотека дата сайентиста | Data Science Machine learning анализ данных машинное обучение from vn


Telegram Библиотека дата-сайентиста | Data Science, Machine learning, анализ данных, машинное обучение
FROM USA